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t Institute of Physics of the Czech Acdemy of Science, CukrovamicM 10, 162 53 &aha 6, 
Czech Republic 
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Abstract. In order to investigate magnetic mupling between metallic layers across 
superconducting spacers. w study a simple inhomogeneous he-electron model with exchange- 
split bands in the magnetic region and paking interaction in the superconducting layers. We solve 
numericaUy the corresponding Bogoliubov-de &MES equations for spin-dependent potentials 
for a one-dimensional geometry and find stmng evidence lhat, while the magnetic coupling 
strength will oscillate as a function of the spacer layer thickness L, it is stmngly damped. This 
damping can be described by purely exponentid form exp(-L/D), where the damping length D 
is of the order of the coherence length of the superconductor. We discuss, briefly, the physical 
circumstazm where such acur-off of the oscillatory magnetic coupling may be observed. 

1. Introduction 

Metallic multilayers are hosts to a number of novel magnetic phenomena, such as 
perpendicular magnetic anisotropy, giant magnetoresistance and oscillatory magnetic 
coupling across non-magnetic spacers to mention but a few (see reviews of Mathon (1991) 
and Bruno and Gyorf€y (1994) and references therein). In this paper, we wish to contribute 
to the understanding of the last one of these by investigating how the coupling is modified 
if the spacer becomes superconducting. 

To be specific, let us consider two semi-infinite ‘host’ magnetic metals separated by a 
non-magnetic spacer of a thickness L, as depicted schematically in figure 1. Well below 
the Curie temperature of the host metals, their magnetizations MI and Mz are temperature 
independent and their magnetic interaction energy ~ E L Z  is found to be of the form 

SE12 = J(L)M, . Mz + . . . 
where, to simplify matters, we have neglected higher-order corrections. Central to our 
concern is the, by now well established, experimental fact that the exchange coupling 
strength J ( L )  is an oscillatory function of L (Heinrich et a1 1990, Parkin et a1 1990, Parkin 
1991). In general, more than one period is observed and these are thought to be related 
to the extrema1 wave vectors connecting opposite sides of the Fermi surface of the spacer 
material in the direction of the layer growth (Edwards et al 1991, Bruno and Chappert 
1991). Evidently, the problem is of such interest because the observed oscillations are so 
directly related to this most fundamental feature of the metallic state. 

Clearly, a way to test the above conjecture is to perform experiments in which the Fermi 
surface changes and to observe the corresponding changes in the coupling. For example, 
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Figum 1. Schematic cross-section of the trilayer system investigated through this paper. The two 
host metals (‘M’) are generally magnetic (although we consider them for the sake of simplicity 
nonmagnetic in some applications); the spacer metal ( ‘S)  between them is nonmagnetic and 
may be superconducting. The total ‘Ienpth’ of the sandwich system d is much larger than the 
ihickness of the spacer L. d >> L, so that the chemical patential II. of the system does not change 
if L varies 

d 
> 

if the spacer metal is a superconductor, on lowering the temperature below its transition 
temperature T: the above mechanism of magnetic coupling should be seriously disrupted. 
In order to stimulate experimental interest in this problem, we have worked out the main 
consequences of the existence of a superconducting gap on the oscillations of the magnetic 
coupling J ( L ) .  

A-potential: 
0 

Figwe Z Schematic depiction of the normal U potential and of the pairing A potentid inside 
the host and inside the spacer we use to model our triiayer system. 

The basic jellium model we study (see figure 2) comprises two, semi-infinite magnetic 
metals separated by a superconductor. The magnets are defined by constant potentials Ut 
and U,  ‘seen’ by the t and .1 spin electrons, respectively. The superconductor is completely 
specified by the constant potential U0 in the spacer layer and by the pairing potential A(r), 
which we consider to be uniform as well, A(r) = Ao. We treat the spacer as an ‘impurity’, 
i.e. we assume that the host is connected to an infinite electron reservoir (in real terms, this 
means that we require d >> L). Hence, the chemical potential p is independent of L. 

The approximation which sets the normal potential U ( x )  to a constant is one which 
is adequate for investigating the nature of Friedel oscillations and oscillatory coupling 
phenomena (Bruno and GyOrf€y 1993). Approximating the pairing potential A ( x )  by a 
constant is a more subtle matter. From the fundamental point of view, determining the 
pairing potentid A(x)  requires a self-consistency procedure by its very nature. In fact, 
assuming that A ( x )  is a constant we violate the gap equation. Nevertheless, the constant- 
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gap approximation proved to work quite well in problems connected with superconducting 
layers (Plehn eta1 1994). As we focus only on the essential features of the phenomena and do 
not attempt to simulate any particular material, we feel that the constant-gap approximation 
does not affect our conclusions significantly. 

We are concerned with both a one and a three-dimensional version of this model. In 
the former, the Y-2 dimensions transverse to the layer interfaces are neglected and in the 
latter it is assumed that all potentials are constant in both the Y and the 2 directions. 

To anticipate the consequences of the above model we note that an impurity in 
a superconductor induces an oscillatory distortion of the charge. As was shown by 
Fetter (1965). the functional form of these distortions is the same as that of the much 
studied Friedel oscillations in normal metals but with an exponential cut-off -exp(-r/Do), 
where r is the radial distance from the impurity site and the damping length DO is of the 
order of the Bardeen-CooperSchrieffer (BCS) superconducting coherence length t o .  As is 
well known, charge or magnetization oscillations about each point defect in a two-impurity 
system give rise to a coupling energy between them that itself is an oscillatory function 
of their separation. Generically, such coupling is often referred to as RKKY (Ruderman. 
Kittel, Kasuya and Yosida) interaction. As was argued by Bruno and Gyorffy (1993). the 
oscillatory magnetic coupling J ( L )  in metallic multilayers may be regarded as the planar 
defect version of the above RKKY interaction. From these arguments it follows that an 
exponential cut-off of the Friedel oscillations in a superconductor may translate into a similar 
cut-off of J ( L ) .  The first purpose of this paper is to find out whether this indeed is the 
case. 

Unfortunately, a thin-film superconductor will remain superconducting only if its 
thickness L is above a certain critical size L, - t o ,  and L, may be too large for an 
observable magnetic coupling to arise. Moreover, the exchange interaction between the 
magnetic regions and the superconducting spacer may suppress the superconductivity. Our 
second purpose is to investigate the circumstances where the exponential damping of the 
magnetic coupling J(L) might be, nevertheless, observable. 

The scope of this paper is as follows. In section 2, a brief summary of the theoretical 
framework employed is presented. Particular emphasis is laid on handling the spin- 
dependent normal potential and on the way the physically relevant quantities (such as 
the electron density n(r), the pairing amplitude ~ ( r )  and the grand canonical potential 
of OUT system Qror) are. obtained. A few more technically oriented details related to this 
section are elaborated in appendices A and B. Friedel-like oscillations of the electron density 
and of the pairing amplitude for planar defects are investigated in section 3 both for a one- 
dimensional and for a three-dimensional geometry. The conjectured exponential decay of the 
oscillatory magnetic coupling across superconducting spacers is tested for a one-dimensional 
geometry in section. 4 within the framework of interface-interface forces. Appendices C 
and D are related to that section. Finally, in section 5, we briefly address the question of 
whether the suppression of the magnetic coupling by superconductivity might be observed 
experimentally and in what sort of system such an effect should be most pronounced. 

2. A summary of the theoretical framework 

For clarity, in this section, we want to recall the basic equations we have relied upon 
and give a brief outline of the methods we employed in solving them yielding the results 
presented in the following sections. 



5242 0 sipr and B L G y 6 m  

2.1. Bogoliubov-de Gennes equations for a system with a spin-dependea normal potential 

Bogoliubov-de Gennes (BdG) equations proved to provide a very efficient fully microscopic 
framework for investigating inhomogeneous superconductors. In a spin-independent form, 
they were applied to studies of superconductor-normal metal slab systems in numerous 
cases (see e.g. Entin-Wohlman and Bar-Sagi 1978, Zaitlin 1982, Tanaka et al 1991). As 
the use of the spin-dependent BdC equations is not so widespread and in order to make 
easier the comparison with the spin-dependent equations presented elsewhere (de Gennes 
1966, Jin and Ketterson 1989). we give a brief outline of the derivation in appendix A. Here 
we quote just the final form of BdG equations for an s wave pairing and a spin-dependent 
normal potential, 

(1) 

where 01 = t or 01 = 4, una(r) and U",=(T) are spin-dependent probability amplitudes that the 
quasiparticle at T is a particle or a hole, respectively. The Hamiltonian He,  the normal spin- 
dependent potential &(T) and the pairing potential Ae.+(v) are defined in appendix A. In 
what follows we shall refer to the normal potential U.(r) as the 'U potential' and to the 
pairing potential A=,-=(?-) as the 'A potential' for brevity, 

Equations (1) reduce to the standard spin-independent form of BdC equations (de Gennes 
1966) if the identifications A ? ~ ( T )  = A(r ) ,  q ( r )  = u(T) ,  u , ( r )  = u(T), q ( ~ )  = U(?-) and 
q ( r )  = -u(T)  are made. 

We(d + U&)l u n o l ( ~ )  +A+&-) u~.-&-) = E n e d r )  
-W:(T) + U-&)l%,-&) + A t a J y ) u n a ( ~ )  = E., 

The density of spin-up and spindown elecaons at zero temperature is given by 

and the pairing amplitude xmp(r) (see appendix A for more clarification) can be expressed 
as follows: 

The total grand canonical potential of a superconductor at T = 0, ator = (He,,) (cf. the 
definitions (AI) and (AZ)), can be shown to be 

Qrol = E(-&,) /d'r IV~, -~(T) I~ .  (4) 
a n  

Through this paper, we take the pairing potential A(r) to be given, i.e. no gap equation is 
solved. 

For a computational convenience, it is useful to transform the two pairs of equations 
given in (1) into a single pair by allowing E to be negative. A straightforward manipulation 
shows that to find a full set of solutions of the system in (1) is equivalent to solving two 
coupled equations (we omit the subscript n for brevity) 

for both positive and negative energies and then identifying for positive-energy solutions 
( E  > 0) 
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and for negativeenergy solutions ( E  e 0) 

U $ ( T )  =U*(?-) 

ut(?-) = U*(?-) (7) 
El  = - E .  

This approach has been adopted throughout this paper. 
Surprisingly, solving the BdG equations numerically for a three-dimensional 

inhomogeneous superconductor is not a trivial task even for the very simple model outlined 
above. To circumvent the central difficulty, arising from a subtle interplay between short and 
large length scales, k;’ and eo, respectively, a very successful ‘semiclassical’ or ‘Andreev’ 
or ‘WKB’ approximation was introduced by Andreev (1964) and Bardeen et nl (1969). 
A thorough discussion of various formulations of the semiclassical approximation can be 
found e.g. in Kobe  and Whitehead (1987). Asbida et 01 (1989) or in Clinton (1992). Most 
microscopic calculations for inhomogeneous problems are tackled in this way. However, as 
the semiclassical approximation focuses only on variations on the scale of and ignores 
variations on the scale of k;’, it cannot be relied on when investigating problems related to 
Friedel oscillations. It may be useful to note that whenever the semiclassical approximation 
was employed in the past, the main concern was a pairing potential A ( x )  varying slowly 
on the spatial scale k;’ (Kieselman 1987, Ashida et a1 1989, Tanaka et a1 1991, Hara 
et a1 1993). On the other hand, when similar systems possessing planar symmetry were 
investigated within an exact theory, rapid Friedel-like osciUations were obtained (Tanaka 
and Tsukada 1989, Stojkovit and Valls 1994). 

The final remark of this section concerns the units: to make the results more easy to 
read, we measure energy throughout this paper in units of Fermi energy EF and distances 
in units of reciprocal Fermi wavevector kF = &. The only exception is section 5 where 
Rydberg atomic units are used to simplify the comparison of our numerical values with 
possible experimental data (note that all the equations and the results keep their form if EF 
is substituted by any other ‘reference’ energy ER).  

2.2. Solution of BdC equarions for n plane geometry 

In order to solve system (5) for a plane geometry, i.e. in the case where the potentials 
U,(?-), U+(T) and A(T) are non-uniform in the X direction only, we separate the variables 
x ,  y and z by setting 

The ‘one-dimensional’ wave-functions u(x) ,  v ( x )  then satisfy the equations 

dZ 
d x z  U ( x )  + [ut(x) - Pt - E ] u ( x )  + A(x) U ( X )  0 -_ 

d2 - 
d x z  f [-U,(X) + pr - E ]  v ( x )  + A*(x) u(x)  = 0 

where a new variable p, p - (k; + k:) has been introduced (note that always pt e p). 
The solutions of a one-dimensional BdG equation (8) for a piecewise constant potential 

are constructed in such a way that, first a fundamental system of solutions in the host and 
in the spacer regions are found, and then they are matched across the interface so that the 
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Figure 3. Intuitive interpretation of oui model in terms of a half-filled parabolic band. The 
vertical axis shows single-particle energy E ,  the horizontal axis shows the reciprocal lattice 
‘k vector’. The quasiparticle energy of the states below the chemical potential (i.e. holes) is 
E = p - E ;  the quasiparticle energy of the states abve the chemical potential (i.e. particles) 
is E = p t E .  The lattice wnstant of our auxiliary periodic system is 0: the width of the 
half-filled band is Zp. 

wave-functions u(x ) ,  u ( x )  together with their first derivatives remain continuous. In the 
host region (1x1 > L/2), the solutions can be written in terms of functions 

where (note lhat E may be both positive and negative in our formalism) 
uh = E+IEI I J ~  = E - I E I  

and the frequencies are (see figure 2 for the notation) 

YI  =  PI - U t  + IEl 
M = J& - U ,  - IEl 

YI  = JCL~ - U4 + IEl 
)”. = JPt - UT - /El 

(10) 

(1 1) 

(12) 

for E z 0 (see equation (6)) or 

(13) 

( 2 ) e*iwlr (14) 

for E > 0 (see equation (7)). In the spacer region (1x1 < L/2)  the solutions are 

where 

U, = E + A0 +Ja 
~ , = E + A ~ -  J E Z - A ;  

and the frequencies are 
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for both E > 0 and E -= 0. 
For imaginary frequencies yj ,  y2, only those exponentials in (9) which do not destroy 

the normalizability of the solution are kept. 
In order to calculate the electron density etc, we have to sum over a complete set 

of orthonormal solutions (see equations (2x4)). In the case of symmetrical U and A 
potentials, normalizable solutions of equation (8) for a given E and pr can be chosen so 
that they are either even (e = 0) or odd (e = 1). Moreover, for certain values of E and pI ,  
there exist two linearly independent solutions for each e-we distinguish them by the index 
j (in a non-superconducting case, this corresponds to the fact that a quasiparticle with an 
excitation energy below the chemical potential can be either a particle or a hole). 

Solutions corresponding to different E ,  p, or e are already orthogonal by their 
construction. Solutions corresponding to identical E ,  pI and e but different j do not come 
out orthogonal naturally and may need explicit orthogonalization. If the ‘scalar product’ 
of two solutions U E , I ( X ) ,  u ~ . ~ ( x )  and U E , Z ( X ) ,  uE&) (we have omitted other indexes for 
simplicity) is 

where the function F ( E )  is not identically zero, a new set of orthogonal solutions can be 
generated by a sort of Gramm-Schmidt orthogonalization procedure so that the new couple 
of solutions already satisfies equation (17) with F ( E )  0. An example of such a procedure 
is given e.g. in  Kobes and Whitehead (1987). 

Our choice of the wave-functions is made in such a way that if two linearly independent 
solutions exist for given E ,  p, and e, the first one ( j  = 1) contains only functions (14) 
with the frequency 01 in the spacer region. The second solution ( j  = 2) is chosen to be 
orthogonal to the first one and although it contains functions of both frequencies in the 
spacer region, functions with the frequency wz are usually present with a ‘bigger weight’. 
In short, the j = 1 solution corresponds mainly to a particle while the j = 2 solution 
corresponds mainly to a hole. 

Writing the wave-function indexes explicitly, the sum En of equations (2)-(4) becomes 

where the function fE.p,,e,j stands collectively for any of the terms summed upon in (2x4). 
The matching conditions give rise to a set of four linear algebraic equations. Although 

explicit analytical formulas for the solutions of these equations can be written, we solve 
them rather numerically as this provides actually more accurate values in the end (due to a 
better numerical stability). As we intend to integrate numerically equations (2)-(4) and to 
look for oscillations which may not exceed of the underlying value, the accuracy is 
of a crucial importance to us. 

The last ‘technical’ remark concerns the upper bound of the E integral in (IS): if no cut- 
off is introduced the integrals (3). (4) diverge (see appendix B and the discussion therein). 
In order to prevent this, in all our calculations involving equations (2X4), we cut the 
energy integrals at the same limit Ec. We choose Ec = 1.10 E,= in order to take account 
of the possible effect of holelike quasiparticles with energies a bit larger than the chemical 
potential p = 1.0 E F .  We have tested that the conclusions drawn from our numerical results 
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do not depend on the particular choice of Ec. provided that Ec is not too low (say not less 
than -1.05 EF for all the systems investigated throughout this paper). 

It is possible to get a physically intuitive interpretation of this cut-off, if one assumes 
that in our model we are dealing with a 'half-filled jellium band' (see figure 3), hence cutting 
off the states outside it. If we think of OUT half-filled parabolic band as being created by 
a lattice with a lattice constant a, then from the dispersion relation at the Brillouin zone 
boundq  

0 sip, and B L GyO& 

2 P = ( 5 0 )  12rr 

we get that our lattice constant would be a = 2.221/&. Clearly, this relation establishes 
a connection between measuring the lengths in reciprocal Fermi wave-vectors k;' = I/& 
and in atomic layer distances a. 

3. Friedel oscillations for planar defects 

As has been discovered by Friedel, the electron density disturbed by the presence of an 
impurity acquires its asymptotic ('host') value in an oscillatov rather than a monotonic 
way. The period of these oscillations is closely related to the Fermi surface. In a normal 
state (A(x) = 0). the 'excess electron density' 

8n( r )  = n(r) -no (19) 
around a spherical impurity (no is the electron density of an unperturbed homogeneous host) 
can be written in the asymptotic ( r  + CO) region as 

where the phase shifts & ( E )  fully describe the influence of the impurity on the electron 
wave-function (Ziman 1964). 

Fetter (1965) investigated the effect of a spherical impurity on of an otherwise 
homogeneous infinite superconductor with a pairing potential A ( r )  = Ao. He observed 
Friedel-like oscillations both in the electron density and in the pairing amplitude. 
Particularly, in the case of a hard-sphere U potential impurity (i.e. U0 -+ CO in OUT notation), 
he found for T = 0 the asymptotic form of the electron density 

xcos[2kpr + &(EF)] 1 + - exp -- ( io) ( io) 
and of the pairing amplitude 

In both of the above expressions, the damping factor DO is given by 

Do = $reo 
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where CO is the usual BCS coherence length, namely t o  = RUF/(ITAO) with U F  standing for 
the Fermi velocity. Moreover, the exponential integral E l ( x )  is given by 

- 1  
dt - e-' 

t El ( x )  = 

and the 'excess pairing amplitude' 6 x ( r )  is defined analogously to (19). viz. 

S x ( r )  = X(T) - xo (24) 
where xo clearly is the uniform pairing amplitude of the host in the absence of the impurity. 

The equations (21) and (22) show that the period of the oscillations remains the same as 
in a non-superconducting case, while the power law decay of these oscillations (cf. equation 
(20)) is modified basically by an exponentially decaying factor. The precise asymptotic form 
of this damping can be found if one keeps only lowest-order terms in ( I / r )  in equations 
(21) and (22) and considers that asymptotically 

1 
E I ( x )  + -e-', 

X 

Then, one finds for T FZ 0 that, in case of a hard-sphere spherical impurity, both the electron 
density and the pairing amplitude oscillations decay as 

- T e x p ( - k ) .  1 
r 

By contrast, for T x T:, the power law parts of the asymptotic decay forms are r W 3  and 
r-* for the electron density n(r) and for the pairing amplitude x ( r ) ,  respectively (Fetter 
1965). 

A one-dimensional system (and, consequently, a three-dimensional system with a planar 
symmehy as well) can be formally treated on the same footing as spherically symmetric 
systems, provided that the angular momentum quantum number t is substituted with the 
parity taking e = 0 for even wavefunctions and e = 1 for odd ones (Butler 1976). To 
investigate a non-superconducting system consisting of a plane (slablike) impurity in an 
otherwise homogeneous host, we applied procedures very similar to those employed by 
Bruno and G y o e  (1993). For a one-dimensional geomehy and T = 0, the asymptotic 
form of the electron density oscillations 6 n ( x )  is 

(26) 
1 '  

s n ( x )  - - (-1)' s i n [ ~ e ( ~ F ) ~  C O s [ 2 k F X  + s ~ ( E ~ ) I  
e=o 

1 '  

while for a proper three-dimensional case we get 

(27) ~ n ( x )  - - ( - I ) ~  s i n [ ~ t ( ~ F ) ]  sinL2GF.x + & ( E F ) ]  

provided that one-dimensional phase shifts & ( E )  are suitably defined. 
Although the results of Fetter (1965) cannot be readily generalized to OUI situation, 

it is natural to expect that the basic trends accompanying the transition from a non- 
superconducting to a superconducting system are preserved. Hence, we conjecture that 
the power law asymptotic decay forms of the electron density and of the pairing amplitude 
are modified by superconductivity into an exponential damping of the form (cf. equations 

xz t=o 

(211, (22) and (26). (27)) 
1 X - - exp(--) 

X" D 
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with the damping length D being of order of the ‘Fetter’ damping length DO and the power 
n of order unity. 

To investigate this problem further, we calculate. numerically. the electron density and 
the pairing amplitude for a model system containing a slablike impurity both in one and 
in three dimensions. A non-superconducting system containing such a defect in U ( x )  is 
described by 

0 sipr and B L Gyom 

U potential: U ( x )  = U0 if 1x1 < L / 2  
A potential: A ( x )  = 0 Vx. 

For a superconducting system with a slablike defect in U ( x )  we have 

U ( x )  = 0 81x1 > L / 2  
(28) 

U potential: U ( x )  = U0 if 1x1 < L / 2  
A potential: A ( x )  = A0 Vx. 

U ( x )  = 0 if 1x1 > L / 2  
(29) 

In three dimensions, we assume that the system is homogeneous both in Y and in Z 
directions. 

Before OUI results are presented, a few technical remarks are in order. The electron 
density n ( x )  and the pairing amplitude x ( x )  are determined by equations (a), (3) and (18). 
The integration region in the ( E ,  pt)  plane is restricted in part by the conditions E < Ec 
and f ir  < p (see text after equation @Z) in appendix B) and in part by the requirement 
that the wave-functions have to be normalizable. This later restriction can be expressed in 
conditions laid on the frequencies (10)-(13) of the solutions in the host region. Whenever 
y1 is real and yz imaginary, there is just one normalizable independent solution to BdG 
equations (8).  Whenever both yI  and 

Note that if ( 2 H 4 )  are to be integrated for a non-superconducting system (i.e. A(x)  = 0 
everywhere), no double integration in (18) actually needs to be performed-it can be reduced 
to a single one by straightforward analytical manipulations (making use of the fact that if 
the two equations (8 )  can be decoupled, the solutions depend on E and on pc only through 
their combinations /I, + E or p, - E) .  However, if A ( x )  # 0, this reduction cannot be 
made and a full two-dimensional integral has to be performed. This makes the numerical 
computation an order of magnitude more demanding in the CPU time. 

In order to decrease the minimum density of the ( E ,  p,)-mesh which is necessary for 
achieving the required accuracy, we found it convenient to slice the whole two-dimensional 
integration region not according to the E and p, variables but according to E and yi, where 
yi are the frequencies of the solutions (9) in the host region. In the region where only one 
linearly independent solution for each E ,  p, and t exists (see text before equation (1 8)). our 
choice of the integration variables is ( E ,  y,). In the region where there are two independent 
solutions for each E ,  p, and e ,  the integration is done in ( E ,  y1) variables when dealing 
with the first ( j  = 1) solution and in ( E ,  yz) variables when dealing with the second ( j  = 2) 
one. Such a choice of integration variables means that, in case of a non-superconducting 
system, the integrands in (2) and (3) do not, for a fixed n, depend on E at all. 

3.1. Slablike impurity in one dimension 

First, let us study the case of a U perturbation in one dimension. The genera! form of 
the potentials is presented in equations (28) and (29). The numerical values of the various 
parameters throughout this section are Uo = 0 .20E~ ,  L = 20k;’ and f i  = 1 .OEF; the pairing 
potential is either Ao = 0 for a normal system or A0 = 0 .03E~  for a superconducting one. 
The exponential damping length is being expressed in terms of the Fetter damping length 
Do defined by (23). All our calculations are performed for a zero temperature, T = 0. We 

are real, there are two normalizable solutions. 
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checked that both the excess electron density Sn(x)  and the excess pairing amplitude S x ( x )  
are well converged with respect to the cut-off energy Ec (see end of section 2.2). 

1-dim, A(z)=O I 
20 40 60 80 100 

distance from center x [kill 
Figure 4. Analysis of the asymptotic behaviour of the electron density n(x)  as a response 
to a slablike U potential perturbation in a non-superconducting one-dimensional system. The 
excess electron density Sn(x)  = n ( x )  - n o  together with the x Sn(x )  curve are presented. The 
x-coordinate is measured from the centre of the impurity. 

In order to test the way in which the oscillations decay, we plot the Sn(x)  results 
together with the 6 n b )  oscillations multiplied by the distance from the centre x ,  and in the 
superconducting cas’ealso by the exponentially varying factor exp(x/D). The analysis of the 
asymptotic behaviour of the excess electron density Sn(x)  for a normal host is presented in 
figure 4. It can be seen readily that the envelope of the x 6 n ( x )  curve approaches a straight 
line, in agreement with equation (26). Note that the ‘asymptotic’ region begins quite soon, 
around x % 30 k F 1 .  

A more interesting case of an analogous superconducting system is analysed in figures 5 
and 6 .  In figure 5 ,  the 6n(x) oscillations are presented together with an x Sn(x)  curve and an 
x exp(x/D)Sn(x) curve. We see immediately that the decay of Sn(x)  oscillations is quicker 
then just I/x. It can be observed also that if the damping length D is suitably chosen 
(D = 1.3 DO in figure 5) .  the envelope of the x exp(x/D)Sn(x) curve tends to a horizontal 
h e  asymptotically. This demonstrates that the electron density oscillations decay as 

1 
Sn(x)  - - exp 

in our one-dimensional model. 
The oscillations in the pairing amplitude S x ( x )  in a superconducting system are analysed 

in a similar way in figure 6. In this case, it was not possible to fit the S x ( x )  decay to 
the asymptotic form given in equation (30). However, it can be described by a purely 
exponential decay, namely 

provided that the damping length is set to D = 0.9D0, as demonstrated in figure 6. 

superconductivity and is 2 k ~  as in the normal state. 
The frequency of the oscillations both in Sn(x) and in S x ( x )  remains unaffected by the 
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Figure 5. Analysis of the asymptotic behaviour of the electron density Sn(x) as a response to 
a slablike U potential pelrurbation in a superconducting onedimensional system. The excess 
electron density Sn(x) together with the x h ( x )  and the x exp(x/D) Sn(x) curves are presented. 
The exponential damping length is D = 1.3Do. Do being the Fetter damping length (see text 
for details). 
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Figure 6. Analysis of the asymptotic behaviour of the pairing amplitude S x ( x )  as a response 
to a slablike U potential perturbation in a superconducting one-dimensional system. The excess 
pairing amplitude Sx(x) = x ( x )  - xo together with the exp(x/D)6x(x) curve are presented. 
The exponential damping length is D = 0.9 &. 

3.2. Slablike impurity in three dimensions 

In this section, results for a proper three-dimensional system perturbed by a slablike impurity 
are presented. The form of the U and A potentials remains unchanged and is described by 
(28) and (29). The numerical values of the parameters U,, L, p and A0 are the same as 
mentioned at the beginning of section 3.1. 

The electron density oscillations induced by a slablike impurity in a normal system are 
described by equation (27). To enable an easier comparison with the superconducting case, 
the system was also investigated numerically. The results are summarized in figure 7. The 
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Figure 7. Analysis of the asymptotic behaviour of the electron density n(x) as a response to 
a slablike U potential perturbation in a non-superconduczing three-dimensional system. The 
excess eleclron density Sn(x) together with the x2 Sn(x) curve are presented. The x-coordinate 
is measured from the centre of the impurity. 
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Figure 8. Analysis of the asymptotic behaviour of the eleNan density Sn(x) as 8 response 
to a s l a b l i  U potential perturbation in a superconducting three-dimensional system. The 
excess elecuon density Sn(x) together with the x 2  Sn(x) and the x2 exp(x/D) Sn(x) CUNS are 
presented. The exponential damping length is D = 1.2 Do, 

'asymptotic region', where the x-* decay is the dominant one, begins at x RS 40kF'. 

oscillations 6n(x)  decay as 
A superconducting system is investigated in figures 8 and 9. The electron density 

1 X 

X 2  
Sn(x)  - - exp 

which is demonstrated in figure 8 (the decay length is D = 1.2 DO). The damping of the 
excess pairing amplitude Sx ( x )  oscillations is investigated in figure 9 and it can be described 
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Figure 9. Analysis of the asymptotic behaviour of the pairing mplitude Sx(x) as a response 
to a slablike U potential perturbation in n superconducting lbr~dimenslond system. The 
excess pairing amplitude 6 x  ( x )  togelher with the x S x ( x )  and the x exp(x/D) S x ( x )  c w e s  are 
presented. The exponential damping length is D = 0.9 Do. 

by 

(33) 
1 

provided that the damping length is D = 0.9 DO. 
It is not very easy to interpret OUT results. We have checked that the decay forms in 

equations (30)-(33) do not depend on the particular choice of numerical parameters used in 
ow model (by performing a similar analysis for several other choices of UO, L and Ao). The 
same is, however, not true for the decay lengths D, which, generally, vary both with A0 
and with the dimensionality: basically, the damping length D as measured in units of 00 
decreases with A0 for Sn(x)  oscillations and increases with with A0 for S x ( x )  oscillations 
in one dimension, while in three dimensions it rises with A0 both for Sn(x)  oscillations 
and for Sx(x) oscillations as well. The fact that the damping length D is not directly 
proportional to DO and hence to the superconducting coherence len& eo is in contradiction 
with the findings of Fetter (1965) for a hard-sphere impurity. Similarly, in the system 
studied by Fetter, the exponential damping length was identical both for Sn(x) and for 
S x ( x )  oscillations, which is not the case of the results presented here. 

As expected, the frequency of the Friedel-like oscillations does not depend on A0 or 
on the dimensionality. The power law part of the decay switches from x-2 to x - ‘  for 
the electron density and from x-’ to xo for the pairing amplitude oscillations when the 
dimensionality is changed from three to one. This is in agreement with the trend in non 
superconducting case, as described by equations (26H27). 

Finally. we found for our system that the electron density Sn(x)  decays more quickly 
than the pairing amplitude S x ( x )  (compare (30) with (31) and (32) with (33)). In contrast, 
Fetter’s results imply for T = 0 the same asymptotic form of decay both for Sn(x)  and for 
S x ( x )  (see equations (21), (22) and (25) in this paper or equation (110) in the original paper 
of Fetter (1965)). 

To conclude this section, it is clear that some unexpected questions concerning the 
nature of Friedel-like oscillations in superconductors and their damping arise from our 
results, particularly as they disagree with the naive expectations based on Fetter (1965). 

S x  ( x )  - - exp 
x (-3 
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Although these are of interest in their own right they are not at the centre of our attention, 
which is the very fact of the exponential damping in this paper. Clearly, the evidence 
for an exponentially decreasing term -exp(-x/D) in the Friedel-like oscillations formulae 
nevertheless is compelling. 

This suggests that the oscillatory coupling in magnetic multilayers will be exponentially 
damped if the spacer becomes superconducting. It is the purpose of the next section to 
verify this. 

4. Interaction between two planar defects-xcillatory coupling 

In the previous section, we studied Friedel oscillations outside a defect described by a 
potential banier in U@).  We have found that the oscillations in the electron density and 
in the pairing amplitude decay with increasing distance from the barrier, i.e. from the 
interface. Of course, in the same way as we have studied the oscillations inside the host it 
would be possible to study them inside the spacer. Clearly, if the thickness of the spacer 
decreases, the interaction of the two hostfspacer interfaces should become more significant. 
This interfaceinterface interaction gives rise to an interesting physical phenomenon, viz. 
oscillatory coupling between the two host layers across the spacer. It is the magnetic version 
of this coupling that is attracting so much current attention (Bruno and Chapert 1991, Bruno 
and Gyorffy 1993). 

In this section, we shall study this oscillatory coupling within framework of the 
interface-interface interactions. Following the line of the previous section, our main interest 
lies in comparing this coupling in the cases of a superconducting and a non-superconducting 
spacer. We will consider the case of a ferromagnetic host, since it is this case which is most 
accessible to experiments. Consequently, in the case of a non-superconducting spacer, we 
investigate the system described by (see figure 2 )  

U potential: U+(x)  = U0 if 1x1 < L/2 
U,@) = U0 if 1x1 i L/2 

A potential: A ( x )  = 0 Vx 

U,(x )  = U,  if 1x1 > L/2 
= U1 if 1x1 > L/2 (34) 

and, for a superconducting spacer, by 

U potential: U,(x )  = U0 if 1x1 < L/2 U,(x)  = U, if 1x1 L/2 

A potential: A(x) = Ao(L) if 1x1 < L/2 A(x) = 0 if 1x1 > L/2. 
U , ( x )  = U, if 1x1 < L/2 U,(x )  = U, if 1x1 > L/2  (35) 

For the actual calculations we have used the following parameter values: U0 = 0.20 E F ,  
U, = O.IOEp ,  U, = 0.00E~ and p = 1 . 0 E ~ .  The spacer thickness L is now a 
variable and so is, in general, the spatially constant pairing potential inside the spacer 
A0 = A&) (see section 4.3 for details). The Fermi wave-vector in the spacer is obviously 
k y  = = 0.894 kF and the spacer coherence length is in our ( E F ,  kF1) units 

4.1. In%eiface-interface force 

The interface-interface contribution to the total grand potential of OUT system can be 
identified from the decomposition 

%t = Qbdk + 2%uerf f Qi-i (37) 
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where abujx  is the pro rafa, homogeneous bulk contribution, ainrr,/ is a surface tension 
contribution and the remaining part-C&+--Can be ascribed to the interaction of the two 
interfaces (Bruno and Gyorffy 1993). If our model (see figures 1 and 2) is to be a 
realistic one, we have to allow the constant pairing potential A0 inside the spacer to 
depend on its thickness L,  A0 = A&) (cf. studies of Kobes and Whitehead (1987) or 
of RadoviC et al (1988) and references therein). That means that, generally, the single- 
interface grand potential a,.,,,, depends on L (as = f&rerj(Ao) = S2inIer~[Ao(L)]) 
and so does the grand potential of the homogeneous spacer per unit volume, 

0 gip, and B L G y o m  

wspme-r Ospoccr(A~) = ~ s p a c e r [ A ~ ( L ) l .  
The bulk contribution can be decomposed into the spacer and host parts, 

(38) 
1 
-nbdk = Whorr (d - L )  A % p c e r ( L )  L 

where A is the area of the interface and o h a r t  is the (L-independent) grand potential density 
of a homogeneous host. By differentiating (37) we get 

I an,,, f"'(L) 

Another expression ('force formula') for f ' " (L)  avoiding direct reference to SZinlerJ or 
C 2 j - j  can be derived using standard density functional techniques. The whole procedure 
is discussed at length in appendix C. Here, we merely quote that in case of symmetrical 
steplike potentials U,(x) and A&) (as depicted in figure 2). such an expression acquires 
the following particularly simple form: 

where U,, and U,,, are the spin-averaged potential inside the spacer and the host, 
respectively, sou, is the constant exchange splitting in the host, Ao(L) is the spatially 
constant L-dependent pairing potential inside the spacer and m ( x )  is the magnetization (see 
appendix C for more details). Equation (40) is much more suitable for most applications 
than direct computation of Qro1 from (4) and subsequent numerical differentiation, mainly 
due to lower CPU time requirements (see beginning of section 4.3 for a detailed discussion). 

If A0 does not depend on L,  the decomposition (39) reduces to 

which means that the interface-interface force f ; - i (L)  = (1/A) (aQ,-,/aL) can be found 
from (40) as the L-dependent part of the total force f""(L)  (possibly up to an additive 
constant). In a normal case (A0 = 0), f i - i (L)  acquires the well known oscillatory form 

(42) 
I .  f i- i(L) - 2 sm(2k:'"'L). 

Following the results of section 3 and of Bruno and G y o m  (1993). we assume that in 
the case of a superconducting spacer, the interface-interface force f i - , (L)  will display 
oscillations with L of the same frequency. This makes it possible to single out the oscillatory 
part of fi-i(L) even if A0 is monotonically L dependent: it will be just: that part of the 
total force f '" '(L) as obtained by (40) which oscillates with L with the periodicity 2k;P"CC'. 
In the following investigation, we will always identify fi- '(L) in this way. 
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4.2. Magnetic contribution to interface-interfnce forces 

So far, we have been dealing only with a ‘symmetrical’ trilayer system, i.e. with a system 
where the potential inside the host on both sides of the non-magnetic spacer is the same. 
However, in the case where we are dealing with a non-magnetic spacer and a ferromagnetic 
host, the magnetic splitting U4 - cl+ can be in principle of a different sign at each side of the 
spacer-the magnetic ordering can be either parallel or antiparallel (cf. figure IO), depending 
on the coupling across the non-magnetic spacer. The oscillatory nature of this magnetic 
coupling is one of the most striking experimental characteristics of magnetic multilayers 
(Mathon 1991, Bruno and Gyorffy 1994). 

parallel: U1 I: 
Figme 10. Schematic depiction of the antiparallel ordering (upper scheme) and of Ihe parallel 
ordering (lower scheme) of the magnetic momen& in the host metals of a trilayer system. 

The natural ‘definition’ of the magnetic coupling (and also the one which is directly 

(43) 
where Qt+(L) is the -pnd potential for the parallel ordering of the system and Rt&(L) that 
for the antiparallel ordering. The coupling force f~&) related to (43) could be defined 

related to measurable quantities) probably is that of Edwards et af  (1991), viz. 

6Qm.,(L) = ntt(L) - Qt$(L) 

as 

If the pairing potential A0 is the same for the parallel and for the antiparallel ordering, 
the homogeneous bulk parts and the surface term are identical for both types of ordering. 
Hence, the force fMc(L) is determined only by the interface-interface interaction. As it 
deals with the isolated magnetic part of the total grand potential, it is natural to expect that 
the force fMc(L)  should describe some sort of ‘magnetic’ contribution to the interface- 
interface force, 

Another way to define the ‘magnetic’ part of the interfaceinterface coupling is to 
consider the force formula, which for the parallel ordering takes the form given in 
equation (40). Evidently, we can distinguish between the electrostatic f; and the magnetic 
fTs contributions to the force and we may define 
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and 

satisfying of course 

= f,';cL) + f;;"p(L). 
Correspondingly. the total grand potential RI,, can be divided into its electrostatic and 

magnetic parts Re,, QmoE by 

Extending naturally the approach of Bruno and Gyorffy (1993). we make a conjecture that 
the magnetic coupling force f . c ( L )  defined by equation (44) is proportional to the magnetic 
part of the interface-interface force in parallel ordering f,","8(L) defined by equation (46). 
That is to say 

f d L )  -+ 2fyQ) (50) 

asymptotically as L -+ 03. In what follows we use f T ( L )  in ow investigation of the 
effect of superconductivity on the coupling of ferromagnetic hosts across a nonmagnetic 
spacer. In appendix D we present numerical evidence in support of equation (50). 

4.3. Numerical investigation of magnetic coupling in one dimension 

As was noted at the beginning of section 3, evaluating the double integral (18) is a 
computationally demanding process due to the high requirements on accuracy. This demand 
is by an order of magnitude greater for evaluation of RIO, than for evaluation of n ( L / 2 )  or 
x ( L / 2 ) :  In order to calculate the electron density and other quantities at L/2 ,  it is necessary 
to integrate functions oscillating with frequency basically L / 2  in k space-see (2). (3) 
and (9). On the other hand, calculating the grand potential (4) involves products of the 
functions (9) integrated over the x-coordinate through the length of the whole system d ,  
implying an integration of functions oscillating with frequency d/2.  As d > L (see figure I), 
it is evident that a much denser integration grid is required for evaluating the grand potential 
in equation (4) than for calculating the forces in equations (40) and (46). Consequently, 
through most of this section we relied on the force formula. Direct evaluation of R, from 
equation (4) was performed only for selected cases in order to check the accuracy of our 
results. In those test cases we found a very good agreement between calculating aR,/aL 
by differentiation of a,,, and by using (40). 

To summarize, our aim is to analyse the damping of oscillations of the magnetic part 
of the interface-interface force f m o g  employing equation (46). The interfacsinterface 
contribution is isolated by subtracting the non-oscillating parts, as suggested at the end of 
section 4.1. Note that the asymptotic decay form of the grand-canonical potential R and of 
the force f s aQ/aL ought to be the same if we assume that 
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It can be verified easily by differentiating (51) with respect to L and keeping the lowest-order 
in (1/L) terms only. 

-1.0 1-dim, A,=O 

0 40 80 120 160 
spacer thickness L [kil] 

Figure 11. Analysis of the asymptotic behaviour of the magnetic pan of the interface-interface 
force f,”,”# for a magnetic host and a non-superondueling spacer in a proper one-dimensional 
geometry. The oscillatoq pan of the magnetic force j$?(L) together with the L q F ( L )  
curve are presented. 

For a better insight, we analyse the normal trilayer system first. It is described by 
potentials defined in equation (34) and their numerical values presented immediately after 
equation (35). The well established (1/L) damping of the magnetic coupling, in one 
dimension. is demons&ated in figure 1 1 ,  where the oscillatory part of the magnetic force 
~ ; ; “ P ( L )  together with the ~ f ’ ” p p ( ~ )  curve is presented. One can see from the envelope 
of the L f z ( L )  oscillations that the ‘asymptotic’ region begins at L - 10kF1, which 
corresponds (cf. end of section 2.2) roughly to the spacer thickness of five monolayers. 

Let us now turn to the same problem for a superconducting spacer. The first guess for 
an asymptote of frT(L) might be 

as that would consider both the -1jL decay in a non-superconducting case and the 
-(ljx) exp(-x/D) decay of Friedel-like oscillations of Sn(x) (cf. equations (30) and (46)). 
In what follows we test this the conjecture numerically. 

As mentioned in section 4.1, the situation is now conceptually a bit more complicated 
than it was when studying a single defect (section 3). Namely, the pairing potential A0 
is changing as L varies. Clearly, this gives rise to a separate problem of considerable 
difficulty. This has been studied hy a number of authors both theoretically (Werthamer 
1963, RadoviC et al 1988, 1991) and experimentally (Banerjee et a1 1982, Wawro 1993, 
Strunk et al 1994: see also the review of Jin and Ketterson 1989). We deal with it using 
the approximation of Kobes and Whitehead (1987) and require that our constant Ao(L) is 
given by 

r L / Z  
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where A is the usual coupling constant. This approximative gap equation in fact means that 
we require self-consistency not in A(x) but only in the integral of A(x). 

As was shown by Kobes and Whitehead (1987, 1988) and by Plehn et ul (1994), 
the condition of equation (53) seems to provide a reasonable description of the proximity 
effect and hence there are good grounds for using it in our calculations as well. In order 
to check whether a particular choice of the Ao(L) dependence may effect our conclusions 
significantly, we analyse both the case of L-independent pairing potential (A&) = A0 VL) 
and the case when Ao(L) conforms to the 'self-consistent constant-gap' condition (53). 

0 sipr and B L G y o m  

1.0 

0.5 
5- 

-1 0.0 
d 
3 
Y 

-0.5 

-1.0 

1.0 

1-dim, A,, = const 
t - . . . l . . . l . . . 1 . . . 1  

C '  ' .  ' ' '  ' " ' . I . '  ' - I  
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Figure 12 Analysis of the asymptotic behaviour of the magnetic part of the interfaceinterface 
force r;,"" for a magnetic host and a supemmducling spacer (Ao(L) = constant) in a propor 
anedimensional geometry. In the upper box (a). the oscillatory pm of the magnetic force 
c ! g ( L )  together with the L f+y*(L) curve is presented. In the lower box (b), the envelops 
of L exp(L/D) e ( L )  curves are presented for several choices of the damping length D. 

First, the situation when A0 does not depend on L is analysed. The decay of the 
oscillatory part of f;;"" is studied in figures 12 and 13. Figure 12(u) is an analogue 
to figure 11: it displays the fF(L) curve together with L f y .  It is evident that the 
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0 40 80 120 160 
spacer thickness L [kp-'] 

Figure 13. Demonstration of the purely exponential damping of oscillations of the magnetic 
coupling force f? for a magnetic host and a superconducting spacer (Ao(L) =constant) in a 
proper onedimensional geomeuy. The exponential damping length is D = 0.47 DO. 

I-dim, self-consistent constant gap 

100 120 140 160 180 
0.0 ' ' .  ' " " ' .  . ' ' .  

spacer thickness L [kF-l] 
Figure 14. Dependence of the self-consistent constant pairing potential Ao(L) of a 
superconducting spacer embedded in a magnetic host on the spacer thiclrness L (proper one- 
dimensional case). 

oscillations now decay faster than in case of a normal spacer. Analysing the damping of 
f+yg it is found that it is inconsistent with the form (52). To illustrate this, envelopes 
of L q F  curves for several choices of the damping length D are plotted in figure 12(b). 
On the other hand, the decay of the magnetic coupling can be, to a sufficient accuracy, 
described asymptotically by a purely exponential form, 

as is demonstrated in figure 13 for D = 0.47 DO. As in sections 3.1 and 3.2, we made the 
same analysis for other numerical values of the pairing potential A0 as well. We found that 
the decay form (54) is a general feature of our model. The damping length D does not 
seem to vary with A0 significantly here, contrary to findings of section 3. 

To investigate whether the above trends remain if the pairing potential Ao(L) is allowed 
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to depend on the spacer thickness L, we determined the self-consistent constant pairing 
potential for the model, described by (35), and present the results in figure 14. The critical 
thickness L, (i.e. thickness below which the superconductivity cannot be maintained) is 
about -9Ok;'. 
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Figure 16. Test of purely exponential damping of the osciUations of magnetic coupling force fy for a magnetic host and a superconducting spacer with an L-dependent pairing potential 
Ao(L) (proper one-dimensional geometry). me exponential damping length D = 0.53 DO varies 
wilh L due to L dependence of to.  

The purely exponential form of the damping is checked in figure 16, where the f;E"p(L) 
curve is presented together with exp(L/D)fF(L) for D = 0.53 DO. It can be seen that 
(54) describes the damping of f+?(L) approximately but as expected the agreement does 
not seem to be as g o d  as in figure 13. Nevertheless, it is safe to say that including some 
sort of self-consistency into our model does not essentially alter the general trends observed 
for fixed Ao, although minor changes in the form of the decay of the coupling may occur. 

The main result of this section therefore is that the suppression of the interlayer magnetic 
coupling in a onedimensional system by superconductivity takes the purely exponential 
form given in equation (54). instead of the intuitively expected power law modified by an 
exponential function (52). Unfortunately, to perform the same analysis for a more realistic 
three-dimensional system using the same procedure as applied here would require too large 
numerical calculations to contemplate at this stage. Nevertheless, given the results of this 
section and of section 3, we can assume that, in three dimensions, the decay ought to contain 
an exponentially decreasing factor. However, the unexpected result of a purely exponential 
decay in one dimension makes it diflicult to guess the answer in three dimensions. 

The fact that the oscillatory interface-interface interaction is exponentially damped 
when the particlehole distinction is blurred by superconductivity indicates that indeed 
this interaction is essentially connected with the existence of a Fermi surface. On the other 
hand, the unexpected form of the cut-off (54) suggests that our understanding of the origin 
of the magnetic coupling within the RKKY framework may not be complete. 

5. Conditions for the experimental observation of the exponential damping 

So far we have demonstrated that, for a sandwich trilayer system consisting of a 
superconductor embedded in a ferromagnetic host, the magnetic oscillatory coupling would 
be exponentially suppressed when the temperature is lowered below the superconducting 
transition temperature T,". The question however remains of whether such a suppression 
would be experimentally observable. 

The main obstacle here is the fact that a thin spacer layer of a superconductor remains 
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superconducting only if its thickness L is larger than a certain critical thickness, L,. This 
thickness depends both on the spacer (through its coherence length 60, with which we prefer 
to parametrize the spacer instead of A0 through this section) and on the host (through the 
exchange energy sour = U+ - U + )  (Banerjee et al 1982, Skunk et al 1994). To assess the 
significance of these factors, we take over the functional form of L, = L&, sour) from the 
theory of RadoviC et al (1988). They studied the same model for a superconducting layer 
embedded in an infinite ferromagnetic host as we have in mind. However, they worked in a 
dirty limit and used the quasiclassical equations for the Green function integrated over energy 
and averaged over the Fermi surface (Eilenberger 1968, Usadel 1 9 7 0 ) d .  also Lodder and 
Koperdraad (1993) for a discussion of various equivalent forms of approximations used in 
RadoviC et a1 (1988). In order to hansform their results to our c lean- l i t  situation, we 
substituted in the equations (7). (17) and (18) of their paper for the dirty-limit coherence 
length 6s the BCS coherence length 60 multiplied by 0.541 to account for a different scaling. 
We arrived at this scaling by comparing the relation for the Ginzburg-Landau coherence 
length :(T) in RadoviC et ai (1988) and in Fetter and Hohenberg (1969) and taking the 
relation between the diffusion coefficient DS and the mean free path e to be 

o Sipr and B L ~ y i i r f f v  

Ds = ~ U F  e 
(Deutscher and de Gennes 1969). We also made the diffusion coefficients in the spacer 
and in the host identical (Ds = DM), and set the boundary condition parameter q equal to 
one. This last step is motivated by the fact that we require both the wave-functions and 
their derivatives to be continuous across x = fL /2  (cf. equation (14) in RadoviE et al's 
paper). The purpose of this section is to explore the circumstances where the suppression 
phenomenon discussed so far becomes experimentally accessible. To facilitate the contact 
between theory and experiment, all quantities will be measured in 'real life' Rydberg atomic 
units, Ryd, for energy and au for distances instead of units of EF and k;' as was the case 
up to now. 

U1 A - U1 
Figure 17. Schematic depiction of the series of systems investigated for the purpose of the 
exchange splilling sour optimization. The intrinsic characteristics of the spacer as well as of the 
non-magnetic part of the hosr p - U0 and p - (Ut + U$)/2, respectively, are kept consfanl 
while the exchange splilting so., =U$ - Ut varies. The numerical values used through this 
section are fi - U0 = 0.60 Ryd and - (U+ + U4)/2 = 0.80 Ryd. 

First, we focus on the host and try to find the optimal exchange splitting sour. To do 
this, we investigate a 'series of systems' such that all characteristics except the exchange 
splitting sour are constant (figure 17). There are two trends working against each other. 
One the one hand, larger splitting sour makes the normalized coupling strength .lo larger 
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(the normalized coupling strength JO is defined by Parkin (1991) as the coupling strength 
for LO = 3 8, = 5.67 au). On the other hand, larger splitting sox, means also larger critical 
thickness L,. thus decreasing the chance for an observable magnetic coupling at L > L,. 
It is hence necessary to assess the combined effect of these two trends. 

We calculated the dependence of JO on soul for our inhomogeneous jellium model. The 
coupling strength was calculated from the 6C2,,(L) curve obtained by integration of (48) 
through the identification 6R,(L) = 2S277(L) (for details see equation (50) and appendix 
D) by analysing the oscillation amplitudes for two successive local extrema. The critical 
thickness L, as a function of sour can be calculated using the results of Radovit et nl 
(1988). provided that identifications mentioned at the beginning of this section are made. 
The dependence of the magnitude of the magnetic coupling when the thickness of the spacer 
is critical, J(L,), on the exchange splitting, sOut, is then 

The results are shown in figure 18 for several choices of the spacer coherence length 
(0. For comparison, the exchange splitting so,[ for three ferromagnetic metals is also 
indicated. it is evident from figure 18 that the magnetic coupling at the critical thickness 
is a monotonically increasing function of the exchange splitting so,, for any choice of the 
spacer. The reason for this is that the dependence of L, on soar is rather a weak one for 
so,[ > 0.01. In short, superconductivity does not suffer too much from the proximity to 
magnetic layers for large enough L. Hence, within a clean l i t ,  the suppression of the 
oscillatory coupling by superconductivity is most likely to be observable for hosts with as 
large so,, as possible. 

m 0.010 

m- 

5 . 
&, = 30 a.u. 

I ........ = 150 a.u. 
h 

0.000 
0.0 0.05 0.1 0.15 0.2 

exchange splitting smt BY] 
F i m  18. The svenmh of the mametic couplinz at the critical thickness J(L , )  as a . .  ... 
.<&e exchange splitting so., for three choices of spacer coherence length. The analogous curve 
for 60 = 400 ay would not be distinguishable from the x axis in ul is scale. 

function 

To continue our analysis, we now turn to examining the role of the spacer. Its physical 
properties can be described within our simple model by the normalized coupling strength 
Jo in the normal state and by the BCS coherence length (0. In an ideal case, one should 
use a material with large Jo and short t o .  However, these two requirements may be in 
contradiction with one another. Namely, generally, good 'couplers' are expected to be poor 
superconductors (Parkin 1991). Therefore, it i s  useful to estimate the magnetic coupling at 
the critical thickness J(L,) as a function of both JO and (0. 
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To achieve this, we again make use the results of RadoviC et a1 (1988) to get the 
dependence of the critical thickness L, on the coherence length $0. We found that L, is 
nearly directly proportional to $0 and, as noted before, it depends on so,, only weakly. 

NbSSn, V3Si 

Figure 19. Lsolines of constant magnetic coupling strength at the critical thickness of the 
superconducting spacer J(L,) as functions of the normalized coupling strength Jo and the 
sp-r coherence length to. The host exchange splitting soour is 0.1 1 Ryd. The individual 
isolines correspond to J(L,)  = 0.001 pRyd au-’ ( - - . . line), J(L , )  = 0.002 pRyd U-’ 
( - -. 1, 
J ( L , )  = 0.01 pRyd au-’ ( - ), J ( L , )  = 0.02 pRyd 3 u 2  ( . . . ), J(L , )  = 0.04 
pRydau-’ ( - . -. ), J ( L J  = 0.08 pRyd ( - . . ), J ( L , )  = 0.20 wRyd auR ( - - - ), 
J ( L J  = 1.0 pRydau-’ ( - ,  - ). Bars outside the graph mark the coherence length of A15 
compounds Nb&, V&. and the normalized coupling strengths of transition metals V. Ir. Ru 
and Rh. respectively. The approximate limit of an experimental resolution (- 0.01 pRyd au-’) 
is indicated by a full thick line. 

- - ), J(L,) = 0.004 wRyd au-2 ( - . . . ), J(L,) = 0.006 pRyd au-2 ( - .  

In figure 19, the isolines of a constant magnitude of the magnetic coupling for the 
critical thickness J(L,) are presented in the ( J O , ~ ~ )  plane. We chose the exchange splitting 
sour = 0.11 Ryd, which is the experimental value for an Fe host (Eastman eta1 1979). Other 
parameters have the numerical values as presented in figure 17. The thick solid line marks 
the approximate current limit of the experimental resolution, 0.01 pRyd au-’ (Bloemen et 
a1 1994, Parkin 1991): ifa particular material is represented by a point above that line, the 
interlayer coupling could still be observable in the normal state for L = L,. The bars outside 
the plot indicate the experimental BCS coherence length of A15 superconductors NbSSn 
and V3Si (Orlando et al 1979) and the normalized coupling strengths of selected spacers: 
.IO = 1.2 pRyd au-* for V, 4.3 pRyd au-’ for Ir, 6.5 pRyd a r 2  for Ru and 14.4 FRyd 
for Rh (Parkin 1991). It seems to be clear from figure 19 that it is more important to have a 
short-coherence-length material for the spacer than a material with large normalized coupling 
strength Jo. 

Comparing the indicated parameters of real materials with the position of the thick line 
representing the limits of experimental resolution, it seems that the coupling would die out 
before the critical thickness L, is achieved for most spacers with coherence lengths $0 > 10- 
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50 lattice spacings. However, given the simplicity of our model, there is a possibility that 
the real situation is more favourable than figure 19 indicates. Another chance to prepare a 
suitable system might be to use alloys for spacers, thereby reducing the coherence length 
50. Note that, contrary to early views (Blackman and Eliott 1970), disorder should not lead 
to a decrease in RKKY coupling (de Chatel 1981, Lemer 1991). 

In the concluding this section we must comment on the reliability of the above estimates. 
Evidently, we use a very simple model to describe our trilayer system and the critical 
thickness L, was only 'translated' from dirty-limit results of RadoviE et al(1988). Previous 
studies nevertheless suggest that such an inhomogeneous jellium model yields results which 
are in order of magnitude agreement with the experiments (Bruno and Gyorffy 1993). 
Therefore, we argue that although particular numerical values may be off by factors of 
order unity, the general trends described in figures 18 and 19 remain. 

6. Conclusions 

We have investigated a simple inhomogeneous jellium model for a hilayer system 
with a possibly superconducting spacer on the basis of the Bogoliubov-de Gennes 
equation. We found that the Friedel oscillations in the electron density n(x)  and in 
the pairing amplitude x ( x )  due to a planar perturbation in the normal U potential are 
exponentially damped. This conclusion generalizes the earlier result of Fetter for a 
point defect. However, the particular forms of the damping of Friedel-like oscillations 
in our model: Sn(x)  - ( l / x )  exp(-x/D), S x ( x )  * exp(-x/D) in one dimension 
and Sn(x)  - (1/x2) exp(-x/D). Sx(x) - ( l / x )  exp(-x/D) in three dimensions are 
surprisingly different from what might have been expected on the bases of a naive 
generalization of Fetter's results. 

A computational scheme, suitable for investigation of interlayer magnetic coupling 
across superconducting spacers based on force formulas, was presented. We found that 
the oscillatory coupling between two ferromagnetic host metals across a non-magnetic 
spacer is suppressed when the spacer becomes superconducting. Obviously, if observed 
experimentally, this phenomenon would confirm dramatically that the oscillatory magnetic 
coupling is closely related to the existence of a well defined Fermi surface. Unexpectedly, in 
one dimension we did not find a power law prefactor as in -(l/L")exp(-LID). Namely, 
the pure exponential damping -exp(-L/D) was sufficient to describe our numerical results. 

Finally, to facilitate a search for the experimentally most convenient physical systems 
for which the suppression of the interlayer coupling might be observable, we provided some 
estimates of the exchange splitting sour and of the spacer coherence length EO and normalized 
coupling strength Jo, where the coupling still could be detectable in the normal state. 
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Appendix A. Derivation of the BdG equations for a system with a spin-dependent 
potential 

Here, we give a brief derivation of BdG equations (1) presented in section 2.1. 



where 

(W 2 He@) = -v - p  

U,(r)  is a spin-dependent external potential, A,p(r) is the pairing potential (considered to 
be external here), p is the chemical potential and the usual second quantized notation is used. 
Rydberg atomic units (?+I = 1, e’ = 2, m = 4) are used in equation (Al) as elsewhere in this 
paper; the summation E, runs over two spin indexes, (Y =t and 01 =J.. The ‘conjugate’ 
pairing potential A:b(~) must satisfy 

A$r) = A&(r) 
and 

AOB(T) = -Aaa(T)  

to ensure real values of the total grand potential a,,, = ( H e / / ) .  where ( ) denotes quantum 
as well as thermal averaging. 

The Hamiltonian He// is diagonalized by a Bogoliubov-Valentine transformation 

$AT) = Iu.,(r) h e  + U , L ( : , o  v:.ul 
n 

provided that the quasiparticle amplitudes U,,@), unU(r) satisfy for both (Y =t and 01 =.J. 
the BdG equations (1) presented in section 2.1. 

The ground state electron density n,(r) = (@$(r)@=(r)), the pairing amplitude 
x(r)=xap(r)= (@u(r)@B(r)) and the total grand potential Go, are given by 
equations (2)-(4). Note that as our Hamiltonian (Al) contains an external pairing potential 
only, no self-consistency condition occurs in our model. The fully self-consistent theory 
need not concern us here. 

Appendix E. Introducing the cut-off in calculations of the pairing amplitude and of 
the total grand potential 

In order to get finite values of the grand potential Qto, and of the paring amplitude x(r), it 
is necessary to introduce explicitly an (energy) cut-off in the integrals (2)-(4). This can be 
demonstrated for the simple case of a uniform superconductor. Provided that U0 = 0 and 
A(?-) = Ao, the quasiparticle amplitudes can be written as (de Gennes 1966) 

where EX is the BCS quasiparticle energy 
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Equations (3) and (4) then lead to 

5267 

and to 

( V  is the volume of the superconductor). No cut-off of course corresponds to kc, = CO, 

kc, = CO (and hence also to Ec, = CO and Ec, = CO). 
As k + 03, the leading term in the first integrand of (BZ) is -Ai/(4nZ); the leading 

term in the second integrand of (B2) is +Ai/(4a2). The second term in both cases is 
of order - I l k Z .  That means that in order to get finite Q/V in (BZ), either both kc, and 
kc, have to he finite or both of them have to be infinite, so that the diverging parts would 
cancel each other through the whole integration region. However, kc, cannot be infinite as 
that would cause x ( r )  to diverge (the integrand in equation @I)  goes like - Ao/(4Z2) 
as kc2 + CO). That means that an explicit cut-off both in 032) and in ( B l )  has to be 
introduced. 

This incompleteness of the jellium model seems to be a consequence of our not dealing 
with the U ( r )  potential property-if U ( r )  is included in the self-consistency procedure, the 
x(r) generating integral of the type of equation 031) converges naturally without the need 
for an explicit cut-off (Suvasini and Gyorffy 1992). 

Appendix C. Derivation of the force formula from the density functional theory 

In this appendix, we derive the 'force formula' given in equation (40) employing the 
formalism of the density functional theory for superconductors (Dreizler and Gross 1990). 

Our aim is to evaluate the derivative of the total grand potential Qro, (cf. equations (Al) 
and (2H3)), 

with respect to L .  Following the arguments of Kohn et al(1989) one finds that 

where F[n ,  x ]  is a universal functional independent of Uu(r), A(r). Moreover it can be 
shown that the thermal equilibrium value of Qto, is the minimum of Qt0, with respect to 
variations both in n ( r )  and in ~ ( r )  defined by equations (2) and (3). 

Having this in mind, we can formally differentiate (C2) to get 

To allow for a formal separation of the electrostatic and the magnetic contributions, we 
express the two components of U,(r) in terms of a 'spin-averaged' potential vo(r) and a 
spin splitting s(r) as 

(C4) 

0) 
U,(?-) = U&) - $(r) 
U&(?,) = U.(T) + is(?-). 
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Substituting from (C4) and (6) into (a), we can write the force formula for a trilayer 
system with a superconducting spacer generally as 

0 i ipr and B L GyO& 

0) 
The electron density n(x)  is as usual given by n(x )  = n&) + n l ( x )  and the magnetization 
m(x)  is defined as m ( x )  = n + ( x )  - n r ( x ) .  This is then the principal result of this appendix. 
Note that the formula (C6) is in its form identical to that derived in Bruno and Gyijrffy 
(1993) except for the last term which occurs only in the case of a superconducting spacer. 

For a 'piece-wise constant' potential, 

A ( x )  = A.o(L) 0 (: - x )  0 ($ + x )  

the force formula (C6) can be reduced to 

For a symmetrical case (parallel ordering), we haves(-) = s(+) = sour and equation (C7) 
transforms to (40) as presented in section 4.1. 

Appendix D. Numerical test of the definition of the magnetic coupling force f;;'9(L) 

In section 4.2 we defined and in section 4.3 we employed the magnetic coupling force 
fPg(L) defined by (46) and (50). In this appendix, we report on a numerical test of the 
formula in equation (50). 

In order to do this, we investigated a one-dimensional sandwich system of a 
superconducting spacer and a magnetic host as specified in (35). We calculated both the 
force f,"p8(L) evaluated according to formula (46) in the parallel configuration and the 
force f , c ( L )  obtained by numerical differentiation of the difference fit+) - G + ( ( L ) ,  as 
suggested by equation (43). We made numerical calculations for a fixed L-independent 
pairing potential A0 = 0.03 EF in the range from L = 2 k;' to L = 120 kF1 and for an L- 
dependent A potential presented in figure 14 in the range from L = 110 kF' to L = 120 k;' , 

In both cases, the results for fF(L) and for f,c(L) agreed within the thickness of a line 
through the whole range of L. 

Although this cannot be regarded as a rigorous proof of relation (50). we feel that for 
our practical purpose this simple example justifies our reliance on (50) throughout section 4. 
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